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Chapitre 8

Systemes a 2DdL




=PFL 2 degres de liberté - Regime libre

Coordonnées généralisées d’un systeme a deux
degrés de liberté
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Forme canonique du régime libre de I’oscillateur

a deux degrés de liberté
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=PFL 2 degrés de liberte - Régime libre

FORME MATRICIELLE DES EQUATIONS DU ) B g,\ |
MOUVEMENT vl &“\7— X =\, |
o
= Forme canonique matricielle du régime libre de
= I’oscillateur a deux degrés de liberté
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o X vecteur des déplacements
5 ou en écriture condensée X vecteur des vitesses
= ~ ; | | X vecteur des accélérations
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=PFL Régime libre - 2 degrées de liberté

EQUATIONS DU MOUVEMENT D’UN SYSTEME . @
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Equations de Newton d’un oscillateur a deux
degrés de liberté sans couplage inertiel
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=PFL Régime libre - 2 degrés de liberté

EQUATIONS DU MOUVEMENT D’UN SYSTEME
szNs COUPLAGE INERTIEL

Régime libre du systeme (sans couplage inertiel)
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=P~L Régime libre et conservatif - 2 degrés de liberté
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=PFL Regime libre et conservatif - 2 degres de liberte

s

Mx+Kx =0
x = Ae?t  (det(Mp*+K) =
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=PFL Regime libre et conservatif - 2 degres de liberte
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=PFL Régime libre et conservatif - 2 degrés de liberté

Solutions générales du régime libre

r;l — All(Cl el®1? + D, e'jwl’)

> 7
X, X, +Ap, (G, ei®21 + D, e-io2?)

Solutions particulieres du régime libre (’?/\/2 = Ay, (Cl edi? + D e 10y )

: 3 2 . 1t -1 t
POUT@3 Ay &%, Ay 1, A 9, A 17 T4y (C2 eio2! + Dy eio2l)  (8.12)
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I Autre forme des solutions générales du régime
libre
(5 Nyos (0t — ) N, cos (01 - )
u = >\X1 C__QS ht — 401_)\\* bar t,&CO/S(Oz’f = (DE)
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=P~L Mode propre

NOTION DE MODE PROPRE

Définition du mode propre d’un systéme

Un mode propre est le mouvement du systéme lié
v‘ \ }L N l . ’
(\,@é\"- = 0 a une pulsation ou fréquence propre.

@ cos( wyt — <pE)J
N —

) X l . . . / /
X < XJ Forme matricielle des solutions générales du
régime libre

x = f X, cos(a)lt— (01)+,32 X5 COS(CUzl‘“ (02)
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=P~L Mode propre
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Forme matricielle des solutions générales du
régime libre

x = f X, COS(C!)II

1T mode

2€IMEC mode

- @)+ B, X, cos (w1 — ¢,)

(8.14)

NOTION DE VECTEUR MODAL

Vecteurs modaux ou vecteurs propres de

e ——

I’oscillateur
rrﬂ - 1 \ ﬂ - 1 3
Doy | By |
k >

! (8.15)

Orthogonalité des modes propres de 1’ oscillateur

(’B‘ Op/ Lﬁf [K]B, ;_(_)J (8.16)
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=PFL Systemes symeétriques

M= Pulsations propres du systeme symétrique
ra —
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Rapports des amplitudes des solutions pour les

Equation caractéristique pour des systemes a symétrie deux pulsations propres
k + k3 — 0)12
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Solutions de 1’équation caractéristique ?

Vecteurs modaux de 1’ oscillateur symétrique
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=PFL Systemes symeétriques

) ( () | Q‘> 7~ ( ,\ l) Premier mode du systeme (oscillations en phase)
@j’ | / X}_ O
X1 = X9 = X1 COS | W11 — @ (822)
Solutions générales du régime libre du systéme L" > L ( )J
symeétrique

Deuxieme mode du systéme (oscillations en

@ -—-Il cos (w7 — @, ) F:y(z cos(w,1 — @,) - opposition de phase)X] 5
L

@: X, cos(a)lt—(pl)—Xz cos(wzt—(pz) x = X cos(a)zt—qoz)
/ J ﬁ ( (8.23)
sz = - Xz COS((UQI — PH
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=PFL Systemes symeétriques

v W
W = el

) {\,@AQ- . " . .
Premier mode du systeme (oscillations en phase)

X = x; = Xjcos(wit— @) (8.22)

Deuxieme mode du systeme (oscillations en

ey Op pOSition de phase)
m Y oY X (
X1 = Xz COS(CUzZ— §02)
§ (8.23)
sz = —Xz COS(CUz[— (pz)
I ; X3
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